COMPARISON OF FTIR CHARACTERIZATION AND MERCURY METAL ADSORPTION PROPERTIES TOWARDS RICE HUSK ACTIVATED CARBON AND RICE HUSK ACTIVATED CARBON IMPREGNATED WITH FE CATALYST

Authors

  • Masdania Zurairah Siregar Universitas Al-Azhar
  • Misdawati Misdawati Universitas Al Washliyah Medan
  • Desi Ardillah Universitas Muhammadiyah Sumatera Utara

DOI:

https://doi.org/10.35261/barometer.v11i1.13169

Abstract

Research on rice husk activated carbon and rice husk activated carbon impregnated with Fe metal catalyst was conducted. Rice husk was carbonized at 400 0C for 2 - 2.5 hours in a furnace, where the time was calculated when the temperature reached 400 0C to obtain rice husk carbon. After the carbonization process, the former rice husk carbon was activated by adding 7% H3PO4 at a ratio of 1: 10. The dried rice husk activated carbon was then heated at 600 0C for 2 - 2.5 hours in a furnace, where the time was calculated when the temperature reached 600 0C. The formed rice husk activated carbon was pulverized, then filtered using a 400-mesh sieve. The rice husk activated carbon was impregnated in a tube and calcined in a furnace for 4 hours at 400 0C, without any gas flow, using Fe (NO3)3.9H2O catalyst. The rice husk activated carbon and impregnated rice husk activated carbon were characterized using FTIR. The impregnated rice husk activated carbon showed absorption in the wavenumber region of 1390–1300 cm-1, indicating the presence of nitro groups, as shown in the absorption regions of 1346.31 cm-1 and 1381.03 cm-1. This indicates the presence of N=O symmetry derived from the Fe (NO3)3 used in the activated carbon impregnation.  The adsorption capacity of rice husk activated carbon for Hg metal was 67,13% and that of impregnated rice husk activated carbon was 71,60%

Downloads

Download data is not yet available.

References

Baksi, S., Biswas, S., Mahajan, S. 2003. Activated Carbon From Bamboo-Technology Development Towards Commercialisation.Departement of Chemical Engineering of IIT, Bombay. India.

Chand, B., Meenakshi, G. 2005. Activated Carbon Adsorption. Lewis Publisher. USA.

Chen, J. et al. 2004. Production of COx - Free Hydrogen and Nanocarbon By Direct Decomposition of Undiluted Methane On Ni-Cu-Al Catalyst Applied Catalysis A : General. 269. pp. 179-186.

Cheremisinoff, Morresi. 1978 Carbon Adsorption Applications,Carbon Adsorption Handbook. Ann Arbor Science Publishers, Inc, Michigan. pp. 7-8.

Donnet, J.B., Bausal, R.C., Wang, M.J. 1993. Carbon Black, Science, and Technology, Marcel Dekker. New York. USA.

Fu, F.L., Wang, Q. 2011. Removal of Heavy Metal Ions From Wastewaters: A Review. J.Environ Manage. 92:407. pp. 18.

Glenn, M.R. 1995. Activated Carbon Applications In The Food and Pharmaceutical Industries.Lewis Publisher. USA.

Gullon, I.M., Vera, J., Conesa, J.A., Gonzales, J.L., Monino, C. 2006. Differences Between Carbon Nanofibers Produced Using Fe dan Ni Catalyst In A Floating Catalyst Reaktor.USA.

Hadyawarman, dkk. 2008. Fabrikasi Material Nanokomposit Superkuat, Ringan dan Transparan Menggunakan Metode Simple Mixing. Jurnal Nanosains & Nanoteknologi.Vol 1, No 1, Februari 2008. pp 14-21.

HASKA. 2012. Spektrofotometer Infra Merah Transformasi Fourier – FTIR. http ://haska.org/2012/09/21/ftir-spektrofotometer-infra-merah-transformasi-fourier/.Diakses tanggal 13 Januari 2013.

Jankowska, H., Andrzes, S., Jerzy, C. 1991. Active Carbon.First Edition. Ellis Horwood. New York. USA.

Jones, P.M. 1975. Mechanics Of Composite Materials, Institute Of Technology, Southem Methodist University, Mc. Graw-Hill, Dallas.

Khopkar, S.M. 2001. Konsep Dasar Kimia Analitik.UI-Press. Jakarta.

Kurniadi, M., Hasani, A. 1996.Studi Pembuatan Karbon Aktif Dari Arang Kayu. Prosiding Pemaparan Hasil Litbang Ilmu Pengetahuan Teknik. Bandung. pp. 123-129.

Lar tey, R.B., Acquah, F. 1999. Developing National Capability For Manufacture Of Activated Carbon From Agricultural Wastes.Institute of Industrial Research.Published In The Ghana Engineer Reprinted With Ghie Permission By The African Technology Forum. Ghana.

Masdania, Z, 2016. Penggunaan Katalis Fe TerhadapKarbon Aktif Cangkang Kelapa Sawit Dan Karbon Aktif Sekam Padi Pada Proses Impregnasi.

Manocha, S.M. 2003. Porous Carbon.www.ias.ac.in/sadhana/Pdf2003Apr/Pe 1070.pdf.Diakses tanggal 15 Februari 2016.

Marham,S. 2009. Spektroskopi, Elusidasi Struktur Molekul Organik. Graha Ilmu. Yogyakarta.

Marsh, H., Fransisco, R.R. 2006. Activated Carbon.Elsevier Science and Technology Books.

Meilita, T.S., Sarma T.S. 2003. Arang Aktif (Pengenalan Dan Proses Pembuatannya). Jurusan Teknik Industri. Fakultas Teknik. Universitas Sumatera Utara. Medan.

Mopoung, S. 2008. Surface Image of Charcoal and Activated Charcoal From Banana Peel. NU, Sci.J.

Muller, Ulrich. 2006. Inorganic Strctural Chemistry. USA: Jhon Willey & Sons.

Najma.2012. Pertumbuhan Nanokarbon Menggunakan Karbon Aktif Dari Limbah Kulit Pisang Dengan Metode Pirolisis Sederhana dan Dekomposisi Metana. Departemen Teknik Kimia. Fakultas Teknik. Universitas Indonesia. Jakarta.

Purwaningsih, S., E.T. Arung dan S. Muladi. 2000. Pemanfaatan Arang Aktif Cangkang Kelapa Sawit Sebagai Adsorben Pada Limbah Cair Kayu Lapis. Fakultas Kehutanan Universitas Mulawarman. Samarinda.

Rao, C. N. R. et. al. 2004.The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Volume 1 : 3-527-30686-2.

Saifuddin, M., Nomanbhay. 2008. Removal of Heavy Metal From Industrial Wastewater Using Chitosan Coated Oil Palm Shell Carcoal. Chemistry Unit, Universiti of Tenaga Nasional. Selangor, Malaysia.

Vigouroux, R.Z. 2011.Pyrolisis of Biomass.Dissertation. Stockholm. Royal Institute of Technology.

Wereko, B.C.Y. Hagan, E.B. 1996. Biomass Conversion and Technology.USA.

Widodo, A., Mardiah., Prasetyo. 2005. Potensi Kitosan dari Sisa Udang sebagai Koagulan Logam Berat Limbah Cair Industri Tekstil.

Wiyarsi , A., Priyambodo, E., 2011. PengaruhKonsentrasi Kitosan Dari Cangkang Udang Terhadap Efisiensi Penyerapan Logam Berat. UNY.Yogyakarta.

Yalcin, N., Sevinc, V. 2000. Studies of The Surface Area And Porosity ofActivated Carbons Prepared From Rice Husks. Sakarya University.Art and Science Faculty.Chemistry Departement.Serdivan.Sakarya. Turkey.

Zakaria, B., Mat. 1995. Chitin and Chitosan.University Kebangsaan Malaysia. Malaysia.

Zhang, X., Chao, A. Wei, B. Li, J. Xu, C. 2002. Rapid Growth of Well-Aligned carbon Nanotube Arrays.Chem. Phys. Left 362. pp. 285-290.

Downloads

Published

2026-01-26

How to Cite

Siregar, M. Z., Misdawati, M., & Ardillah, D. (2026). COMPARISON OF FTIR CHARACTERIZATION AND MERCURY METAL ADSORPTION PROPERTIES TOWARDS RICE HUSK ACTIVATED CARBON AND RICE HUSK ACTIVATED CARBON IMPREGNATED WITH FE CATALYST. Barometer, 11(1), 01–07. https://doi.org/10.35261/barometer.v11i1.13169